10,091 research outputs found

    Constrained fitting of three-point functions

    Get PDF
    We determine matrix elements for B→DB \to D semileptonic decay. The use of the constrained fitting method and multiple smearings for both two- and three-point correlators allows an improved calculation of the form factors.Comment: Talk given at Lattice2001(heavyquark), 3 pages, 4 figure

    Combining Magnetic and Electric Sails for Interstellar Deceleration

    Full text link
    The main benefit of an interstellar mission is to carry out in-situ measurements within a target star system. To allow for extended in-situ measurements, the spacecraft needs to be decelerated. One of the currently most promising technologies for deceleration is the magnetic sail which uses the deflection of interstellar matter via a magnetic field to decelerate the spacecraft. However, while the magnetic sail is very efficient at high velocities, its performance decreases with lower speeds. This leads to deceleration durations of several decades depending on the spacecraft mass. Within the context of Project Dragonfly, initiated by the Initiative of Interstellar Studies (i4is), this paper proposes a novel concept for decelerating a spacecraft on an interstellar mission by combining a magnetic sail with an electric sail. Combining the sails compensates for each technologys shortcomings: A magnetic sail is more effective at higher velocities than the electric sail and vice versa. It is demonstrated that using both sails sequentially outperforms using only the magnetic or electric sail for various mission scenarios and velocity ranges, at a constant total spacecraft mass. For example, for decelerating from 5% c, to interplanetary velocities, a spacecraft with both sails needs about 29 years, whereas the electric sail alone would take 35 years and the magnetic sail about 40 years with a total spacecraft mass of 8250 kg. Furthermore, it is assessed how the combined deceleration system affects the optimal overall mission architecture for different spacecraft masses and cruising speeds. Future work would investigate how operating both systems in parallel instead of sequentially would affect its performance. Moreover, uncertainties in the density of interstellar matter and sail properties need to be explored

    Fidelity threshold for long-range entanglement in quantum networks

    Full text link
    We present a strategy to generate long-range entanglement in noisy quantum networks. We consider a cubic lattice whose bonds are partially entangled mixed states of two qubits, and where quantum operations can be applied perfectly at the nodes. In contrast to protocols designed for one- or two-dimensional regular lattices, we find that entanglement can be created between arbitrarily distant qubits if the fidelity of the bonds is higher than a critical value, independent of the system size. Therefore, we show that a constant overhead of local resources, together with connections of finite fidelity, is sufficient to achieve long-distance quantum communication in noisy networks.Comment: published versio

    Sensing and decision-making in random search

    Full text link
    While microscopic organisms can use gradient-based search to locate resources, this strategy can be poorly suited to the sensory signals available to macroscopic organisms. We propose a framework that models search-decision making in cases where sensory signals are infrequent, subject to large fluctuations, and contain little directional information. Our approach simultaneously models an organism's intrinsic movement behavior (e.g. Levy walk) while allowing this behavior to be adjusted based on sensory data. We find that including even a simple model for signal response can dominate other features of random search and greatly improve search performance. In particular, we show that a lack of signal is not a lack of information. Searchers that receive no signal can quickly abandon target-poor regions. Such phenomena naturally give rise to the area-restricted search behavior exhibited by many searching organisms

    Entanglement properties of multipartite entangled states under the influence of decoherence

    Full text link
    We investigate entanglement properties of multipartite states under the influence of decoherence. We show that the lifetime of (distillable) entanglement for GHZ-type superposition states decreases with the size of the system, while for a class of other states -namely all graph states with constant degree- the lifetime is independent of the system size. We show that these results are largely independent of the specific decoherence model and are in particular valid for all models which deal with individual couplings of particles to independent environments, described by some quantum optical master equation of Lindblad form. For GHZ states, we derive analytic expressions for the lifetime of distillable entanglement and determine when the state becomes fully separable. For all graph states, we derive lower and upper bounds on the lifetime of entanglement. To this aim, we establish a method to calculate the spectrum of the partial transposition for all mixed states which are diagonal in a graph state basis. We also consider entanglement between different groups of particles and determine the corresponding lifetimes as well as the change of the kind of entanglement with time. This enables us to investigate the behavior of entanglement under re-scaling and in the limit of large (infinite) number of particles. Finally we investigate the lifetime of encoded quantum superposition states and show that one can define an effective time in the encoded system which can be orders of magnitude smaller than the physical time. This provides an alternative view on quantum error correction and examples of states whose lifetime of entanglement (between groups of particles) in fact increases with the size of the system.Comment: 27 pages, 11 figure

    Are TIPS really tax disadvantaged? Rethinking the tax treatment of U.S. Treasury Inflation Indexed Securities

    Get PDF
    In 1997 the U.S. Treasury introduced Inflation Indexed (or Protected) Securities with substantial promotional fanfare. Yet, due in part to what some in the finance profession have described as a "tax disadvantage" placed upon TIPS, many are questioning whether they should appeal to a wide audience. Some, in fact, advise holding TIPS only in tax-deferred accounts. In this paper, the authors develop a framework that allows us to demonstrate that the tax treatment of TIPS is trivially different from that of conventional Treasury securities. Utilizing an after-tax valuation approach, they further show that under relatively conservative projections for inflation, TIPS generally have after-tax yields comparable to, if not exceeding, conventional fixed-rate Treasury securities.Investments ; Taxation ; Securities ; Interest rates ; Income tax

    Capillary focusing close to a topographic step: Shape and instability of confined liquid filaments

    Full text link
    Step-emulsification is a microfluidic technique for droplet generation which relies on the abrupt decrease of confinement of a liquid filament surrounded by a continuous phase. A striking feature of this geometry is the transition between two distinct droplet breakup regimes, the "step-regime" and "jet-regime", at a critical capillary number. In the step-regime, small and monodisperse droplets break off from the filament directly at a topographic step, while in the jet-regime a jet protrudes into the larger channel region and large plug-like droplets are produced. We characterize the breakup behavior as a function of the filament geometry and the capillary number and present experimental results on the shape and evolution of the filament for a wide range of capillary numbers in the jet-regime. We compare the experimental results with numerical simulations. Assumptions based on the smallness of the depth of the microfluidic channel allow to reduce the governing equations to the Hele-Shaw problem with surface tension. The full nonlinear equations are then solved numerically using a volume-of-fluid based algorithm. The computational framework also captures the transition between both regimes, offering a deeper understanding of the underlying breakup mechanism

    Four econometric models and monetary policy: the longer-run view

    Get PDF
    Econometric models ; Monetary policy
    • …
    corecore